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TSH350

550MHz low noise current feedback amplifier

Features
■ Bandwidth: 550MHz in unity gain

■ Quiescent current: 4.1mA

■ Slew rate: 940V/μs

■ Input noise: 1.5nV/√ Hz

■ Distortion: SFDR=-66dBc (10MHz, 1Vpp)

■ 2.8Vpp minimum output swing on 100Ω load for 
a 5V supply

■ Tested on 5V power supply

Applications
■ Communication & video test equipment

■ Medical instrumentation

■ ADC drivers

Description
The TSH350 is a current feedback operational 
amplifier using a very high-speed complementary 
technology to provide a bandwidth up to 410MHz 
while drawing only 4.1mA of quiescent current. 
With a slew rate of 940V/µs and an output stage 
optimized for driving a standard 100Ω load, this 
circuit is highly suitable for applications where 
speed and power-saving are the main 
requirements.

The TSH350 is a single operator available in the 
tiny SOT23-5 and SO-8 plastic packages, saving 
board space as well as providing excellent 
thermal and dynamic performance.
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Table 1. Absolute maximum ratings (AMR)

Symbol Parameter Value Unit

VCC Supply voltage (1)

1. All voltage values are measured with respect to the ground pin.

6 V

Vid Differential input voltage(2)

2. Differential voltage is the non-inverting input terminal with respect to the inverting input terminal.

+/-0.5 V

Vin Input voltage range(3)

3. The magnitude of input and output voltage must never exceed VCC +0.3V.

+/-2.5 V

Tstg Storage temperature -65 to +150 °C

Tj Maximum junction temperature 150 °C

Rthja

Thermal resistance junction to ambient

SOT23-5
SO-8

250
150

°C/W

Rthjc

Thermal resistance junction to case

SOT23-5
SO-8

80
28

°C/W

Pmax

Maximum power dissipation(4) (@Tamb=25°C) for Tj=150°C

SOT23-5
SO-8

4. Short-circuits can cause excessive heating. Destructive dissipation can result from short-circuits on all 
amplifiers.

500
830

mW

ESD

HBM: human body model (5)

pins 1, 4, 5, 6, 7 and 8
pins 2 and 3

5. Human body model: A 100pF capacitor is charged to the specified voltage, then discharged through a 
1.5kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations 
while the other pins are floating. 

2
0.5

kV

MM: machine model (6) 
pins 1, 4, 5, 6, 7 and 8
pins 2 and 3

6. Machine model: A 200pF capacitor is charged to the specified voltage, then discharged directly between 
two pins of the device with no external series resistor (internal resistor < 5Ω). This is done for all couples of 
connected pin combinations while the other pins are floating.

200
60

V

CDM: charged device model(7)

pins 1, 4, 5, 6, 7 and 8
pins 2 and 3

7. Charged device model: all pins and the package are charged together to the specified voltage and then 
discharged directly to the ground through only one pin. This is done for all pins.

1.5
1.5

kV

Latch-up immunity 200 mA
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Table 2. Operating conditions

Symbol Parameter Value Unit

VCC Supply voltage (1) 4.5 to 5.5 V

Vicm Common mode input voltage -VCC+1.5V to +VCC-1.5V V

Toper Operating free air temperature range -40 to + 85 °C

1. Tested in full production at 5V (±2.5V) supply voltage.
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Table 3. Electrical characteristics for VCC = ±2.5V, Tamb = 25°C (unless otherwise specified)

Symbol Parameter Test conditions Min. Typ. Max. Unit

DC performance

Vio
Input offset voltage
Offset voltage between both inputs

Tamb 0.8 4
mV

Tmin < Tamb < Tmax 1

ΔVio Vio drift vs. temperature Tmin < Tamb < Tmax 0.9 μV/°C

Iib+
Non inverting input bias current
DC current necessary to bias the input +

Tamb 12 35
μA

Tmin < Tamb < Tmax 13

Iib-
Inverting input bias current
DC current necessary to bias the input -

Tamb 1 20
μA

Tmin < Tamb < Tmax 2.5

CMR
Common mode rejection ratio

20 log (ΔVic/ΔVio)

ΔVic = ±1V 56 60
dB

Tmin < Tamb < Tmax 58

SVR
Supply voltage rejection ratio

20 log (ΔVCC/ΔVio)

ΔVCC=+3.5V to +5V 68 81
dB

Tmin < Tamb < Tmax 78

PSR
Power supply rejection ratio

20 log (ΔVCC/ΔVout)

AV = +1, ΔVCC=±100mV
at 1kHz

51
dB

Tmin < Tamb < Tmax 48

ICC
Positive supply current
DC consumption with no input signal

No load 4.1 4.9 mA

Dynamic performance and output characteristics

ROL

Transimpedance
Output voltage/input current gain in open 
loop of a CFA.
For a VFA, the analog of this feature is the 
open loop gain (AVD)

ΔVout = ±1V, RL = 100Ω 170 270 kΩ

Tmin < Tamb < Tmax 250 kΩ

Bw

-3dB bandwidth
Frequency where the gain is 3dB below the 
DC gain AV
Note: Gain bandwidth product criterion is not 
applicable for current-feedback-amplifiers

Small signal 
Vout=20mVpp
AV = +1, RL = 100Ω
AV = +2, RL = 100Ω
AV = +10, RL = 100Ω
AV = -2, RL = 100Ω 250

550
390
125
370 MHz

Gain flatness @ 0.1dB
Band of frequency where the gain variation 
does not exceed 0.1dB

Small signal 
Vout=100mVp
AV = +1, RL = 100Ω

65

SR
Slew rate
Maximum output speed of sweep in large 
signal

Vout = 2Vpp, AV = +2, 
RL = 100Ω 940 V/μs

VOH High level output voltage
RL = 100Ω 1.44 1.56 V

Tmin < Tamb < Tmax 1.49
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VOL Low level output voltage
RL = 100Ω -1.53 -1.44 V

Tmin < Tamb < Tmax -1.49

Iout

Isink

Short-circuit output current coming in the op-
amp (see Figure 9)

Output to GND 135 205

mA
Tmin < Tamb < Tmax 195

Isource

Output current coming out from the op-amp 
(see Figure 10)

Output to GND -140 -210

Tmin < Tamb < Tmax -185

Noise and distortion

eN
Equivalent input noise voltage
See Section 5: Noise measurements

F = 100kHz 1.5 nV/√Hz

iN

Equivalent input noise current (+)
See Section 5: Noise measurements

F = 100kHz 20 pA/√Hz

Equivalent input noise current (-)
See Section 5: Noise measurements

F = 100kHz 13 pA/√Hz

SFDR
Spurious free dynamic range
The highest harmonic of the output spectrum 
when injecting a filtered sine wave

AV = +1, Vout = 1Vpp
F = 10MHz
F = 20MHz
F = 50MHz
F = 100MHz

-66
-57
-46
-42

dBc

Table 3. Electrical characteristics for VCC = ±2.5V, Tamb = 25°C (unless otherwise specified) 

Symbol Parameter Test conditions Min. Typ. Max. Unit

Table 4. Closed-loop gain and feedback components

VCC (V) Gain Rfb (Ω) -3dB Bw (MHz) 0.1dB Bw (MHz)

±2.5

+10 300 125 22

-10 300 120 20

+2 300 390 110

-2 300 370 70

+1 820 550 65

-1 300 350 120
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Figure 1. Frequency response, positive gain Figure 2. Frequency response, negative gain
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load

Figure 6. Step response vs. capacitor load
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Figure 7. Slew rate Figure 8. Output amplitude vs. load
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Figure 13. Quiescent current vs. VCC Figure 14. Distortion vs. output amplitude
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Figure 19. Reverse isolation vs. frequency Figure 20. SVR vs. temperature
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Figure 25. Vio vs. temperature Figure 26. ICC vs. temperature
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3 Evaluation boards

An evaluation board kit optimized for high-speed operational amplifiers is available (order 
code: KITHSEVAL/STDL). As well as a CD-ROM containing datasheets, articles, application 
notes and a user manual, the kit includes the following evaluation boards:

● SOT23_SINGLE_HF BOARD

Board for the evaluation of a single high-speed op-amp in SOT23-5 package.

● SO8_SINGLE_HF

Board for the evaluation of a single high-speed op-amp in SO-8 package.

● SO8_DUAL_HF

Board for the evaluation of a dual high-speed op-amp in SO-8 package.

● SO8_S_MULTI

Board for the evaluation of a single high-speed op-amp in SO-8 package in inverting 
and non-inverting configuration, dual and single supply.

● SO14_TRIPLE

Board for the evaluation of a triple high-speed op-amp in SO-14 package with video 
application considerations.

Board material:

● 2 layers

● FR4 (ε r=4.6)

● epoxy 1.6mm

● copper thickness: 35µm

Figure 29. Evaluation kit for high-speed op-amps
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4 Power supply considerations

Correct power supply bypassing is very important for optimizing performance in high-
frequency ranges. Bypass capacitors should be placed as close as possible to the IC pins to 
improve high-frequency bypassing. A capacitor greater than 1μF is necessary to minimize 
the distortion. For better quality bypassing, a capacitor of 10nF can be added which should 
also be placed as close as possible to the IC pins.

Bypass capacitors must be incorporated for both the negative and the positive supply.

Note: On the SO8_SINGLE_HF board, these capacitors are C6, C7, C8, C9.

Figure 30. Circuit for power supply bypassing

Single power supply

In the event that a single supply system is used, biasing is necessary to obtain a positive 
output dynamic range between 0V and +VCC supply rails. Considering the values of VOH 
and VOL, the amplifier will provide an output swing from +0.9V to +4.1V on a 100Ω load.

The amplifier must be biased with a mid-supply (nominally +VCC/2), in order to maintain the 
DC component of the signal at this value. Several options are possible to provide this bias 
supply, such as a virtual ground using an operational amplifier or a two-resistance divider 
(which is the cheapest solution). A high resistance value is required to limit the current 
consumption. On the other hand, the current must be high enough to bias the non-inverting 
input of the amplifier. If we consider this bias current (35μA maximum) as 1% of the current 
through the resistance divider, to keep a stable mid-supply, two resistances of 750Ω can be 
used.

The input provides a high-pass filter with a break frequency below 10Hz which is necessary 
to remove the original 0 volt DC component of the input signal, and to fix it at +VCC/2. 

Figure 31 illustrates a 5V single power supply configuration for the SO8_S_MULTI 
evaluation board (see Evaluation boards on page 11).
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A capacitor CG is added in the gain network to ensure a unity gain in low frequency to keep 
the right DC component at the output. CG contributes to a high-pass filter with Rfb//RG and 
its value is calculated with a consideration of the cut off frequency of this low-pass filter.

Figure 31. Circuit for +5V single supply (using evaluation board SO8_S_MULTI)
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5 Noise measurements

The noise model is shown in Figure 32:

● eN is the input voltage noise of the amplifier

● iNn is the negative input current noise of the amplifier

● iNp is the positive input current noise of the amplifier

Figure 32. Noise model
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where ΔF is the specified bandwidth.

On a 1Hz bandwidth the thermal noise is reduced to:

where k is the Boltzmann's constant, equal to 1,374.10-23J/°K. T is the temperature (°K).

The output noise eNo is calculated using the Superposition Theorem. However, eNo is not 
the simple sum of all noise sources, but rather the square root of the sum of the square of 
each noise source, as shown in Equation 1:
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Equation 2

The input noise of the instrumentation must be extracted from the measured noise value. 
The real output noise value of the driver is:

Equation 3

The input noise is called equivalent input noise because it is not directly measured but is 
evaluated from the measurement of the output divided by the closed loop gain (eNo/g).

After simplification of the fourth and the fifth term of Equation 2 we obtain:

Equation 4

Measurement of the input voltage noise eN

If we assume a short-circuit on the non-inverting input (R3=0), from Equation 4 we can 
derive:

Equation 5

In order to easily extract the value of eN, the resistance R2 will be chosen to be as low as 
possible. In the other hand, the gain must be large enough:

R3=0, gain: g=100

Measurement of the negative input current noise iNn

To measure the negative input current noise iNn, we set R3=0 and use Equation 5. This 
time, the gain must be lower in order to decrease the thermal noise contribution:

R3=0, gain: g=10

Measurement of the positive input current noise iNp

To extract iNp from Equation 3, a resistance R3 is connected to the non-inverting input. The 
value of R3 must be chosen in order to keep its thermal noise contribution as low as 
possible against the iNp contribution:

R3=100W, gain: g=10

eNo2 eN2 g2 iNn2 R22 iNp2
+×+× R32× g2× R2

R1
--------

2
4kTR1 4kTR2 1 R2

R1
--------+

2
4kTR3×+ +×+=

eNo Measured( )2 instrumentation( )2
–=

eNo2 eN2 g2 iNn2 R22 iNp2
+×+× R32× g2× g 4kTR2 1 R2

R1
--------+

2
4kTR3×+×+=

eNo eN2 g2 iNn2 R22 g 4kTR2×+×+×=
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6 Intermodulation distortion product

The non-ideal output of the amplifier can be described by the following series:   

where the input is Vin=Asinωt, C0 is the DC component, C1(Vin) is the fundamental and Cn
 is 

the amplitude of the harmonics of the output signal Vout.

A one-frequency (one-tone) input signal contributes to harmonic distortion. A two-tone input 
signal contributes to harmonic distortion and to the intermodulation product.

The study of the intermodulation and distortion for a two-tone input signal is the first step in 
characterizing the driving capability of multi-tone input signals.

In this case:

then: 

From this expression, we can extract the distortion terms, and the intermodulation terms 
from a single sine wave:

● second order intermodulation terms IM2 by the frequencies (ω1-ω2) and (ω1+ω2) with an 
amplitude of C2A2 

● third order intermodulation terms IM3 by the frequencies (2ω1-ω2), (2ω1+ω2), (−ω1+2ω2) 
and (ω1+2ω2) with an amplitude of (3/4)C3A3

The intermodulation product of the driver is measured by using the driver as a mixer in a 
summing amplifier configuration (see Figure 33). In this way, the non-linearity problem of an 
external mixing device is avoided.

Figure 33. Inverting summing amplifier (using evaluation board SO8_S_MULTI)

Vout C0 C1Vin C2V2
in … C+ nVn

in+ + +=

Vin A ω1tsin A ω2tsin+=

Vout C0 C1 A ω1tsin A ω2tsin+( ) C2 A ω1tsin A ω2tsin+( )2… Cn A ω1tsin A ω2tsin+( )n
+ + +=

+

_

R

Rfb

100 

Vout

R2Vin2

Vin1 R1

+

_

R

Rfb

100 

Vout

R2Vin2

Vin1 R1



TSH350 Inverting amplifier biasing

 17/22

7 Inverting amplifier biasing

A resistance is necessary to achieve good input biasing, such as resistance R shown in 
Figure 34.

The magnitude of this resistance is calculated by assuming the negative and positive input 
bias current. The aim is to compensate for the offset bias current, which could affect the 
input offset voltage and the output DC component. Assuming Iib-, Iib+, Rin, Rfb and a zero 
volt output, the resistance R is:

Figure 34. Compensation of the input bias current

R
Rin Rfb×
Rin R+ fb

------------------------=

R

Load

Output

Rfb

RinIib-

Iib+

VCC+

VCC-

+

_

R

Load

Output

Rfb

RinIib-

Iib+

VCC+

VCC-

+

_
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8 Active filtering

Figure 35. Low-pass active filtering, Sallen-Key

From the resistors Rfb and RG we can directly calculate the gain of the filter in a classic non-
inverting amplification configuration: 

We assume the following expression as the response of the system:

The cut-off frequency is not gain-dependent and so becomes:

The damping factor is calculated by the following expression:

The higher the gain, the more sensitive the damping factor is. When the gain is higher than 
1, it is preferable to use some very stable resistor and capacitor values. In the case of 
R1=R2=R:

Due to a limited selection of values of capacitors in comparison with resistors, we can set 
C1=C2=C, so that:

+

_

RG

IN

Rfb
910 

100 

OUT

R1 R2

C2

C1

+

_

RG

IN

Rfb
910 

100 

OUT

R1 R2

C2

C1

AV g 1
Rfb

Rg
--------+= =

Tjω
Voutjω
Vinjω

----------------- g

1 2ζ jω
ωc
----- jω( )2

ωc
2

------------+ +

-----------------------------------------= =

ωc
1

R1R2C1C2
-------------------------------------=

ζ 1
2
---ωc C1R1 C1R2 C2R1 C1R1g–+ +( )=

ζ
2C2 C1

Rfb

Rg
--------–

2 C1C2

---------------------------------=

ζ
2R2 R1

Rfb

Rg
--------–

2 R1R2

---------------------------------=
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9 Package information

Figure 36. SOT23-5 package mechanical data

Ref.

Dimensions

Millimeters Mils

Min. Typ. Max. Min. Typ. Max.

A 0.90 1.45 35.4 57.1

A1 0.00 0.15 0.00 5.9

A2 0.90 1.30 35.4 51.2

b 0.35 0.50 13.7 19.7

C 0.09 0.20 3.5 7.8

D 2.80 3.00 110.2 118.1

E 2.60 3.00 102.3 118.1

E1 1.50 1.75 59.0 68.8

e 0.95 37.4

e1 1.9 74.8

L 0.35 0.55 13.7 21.6
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Figure 37. SO-8 package mechanical data

Ref.

Dimensions

Millimeters Inches

Min. Typ. Max. Min. Typ. Max.

A 1.75 0.069

A1 0.10 0.25 0.004 0.010

A2 1.25 0.049

b 0.28 0.48 0.011 0.019

c 0.17 0.23 0.007 0.010

D 4.80 4.90 5.00 0.189 0.193 0.197

H 5.80 6.00 6.20 0.228 0.236 0.244

E1 3.80 3.90 4.00 0.150 0.154 0.157

e 1.27 0.050

h 0.25 0.50 0.010 0.020

L 0.40 1.27 0.016 0.050

k 1° 8° 1° 8°

ccc 0.10 0.004
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10 Ordering information

          

11 Revision history

         

Table 5. Order codes

Part number
Temperature 

range
Package Packing Marking

TSH350ILT

-40°C to +85°C

SOT23-5 Tape & reel K305

TSH350ID SO-8 Tube TSH350I

TSH350IDT SO-8 Tape & reel TSH350I

Date Revision Changes

1-Oct-2004 1 First release corresponding to Preliminary Data version of datasheet.

10-Dec-2004 2 Release of mature product datasheet.

21-Jun-2005 3
In Table 1 on page 2, Rthjc thermal resistance junction to ambient 
replaced by thermal resistance junction to case.

8-Jun-2007 4 Format update.
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